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For classical lattice systems with finite-range interactions it is proven that if a 
state minimizes a free-energy functional at nonzero temperature with respect to 
variations of the state inside all regions of limited size (for instance, all regions 
with only one lattice site!) then it is a Gibbs state. This result rules out the 
possibility of defining metastable states at T:~ 0 as those which satisfy the 
thermodynamical stability conditions for regions with small volume-to-surface 
ratio, unlike the T = 0 case. 
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1. INTRODUCTION 

The equi l ib r ium states of  la t t ice  systems with f ini te-range in terac t ions  at  
nonzero  t empera tu re  can  be charac te r ized  by  the D.L.R.  condi t ion  O). This 
set of equa t ions  expresses the requ i rement  that  for  every finite region the 
cond i t iona l  probabi l i t i es  of the in ternal  conf igura t ions  given the externa l  
conf igura t ion  are  Gibbs ian .  

The  p r o b l e m  of charac te r iza t ion  of me tas t ab le  states of these systems 
remains  largely open  in spite of several  a t tempts .  In  some app roaches  (2'3) 
states sat isfying a res t r ic ted G i b b s  cond i t ion  were shown to d i sp lay  some 
des i rable  features  (a) of me tas t ab le  states. The  rest r ic t ions imposed  were in 
the conf igura t ion  space  of the system and  forced  the state to be far  f rom 
the equi l ib r ium one. This  p a p e r  o r ig ina ted  f rom an  a t t empt  to p rov ide  a 
var ia t iona l  pr inc ip le  f rom which bo th  the s table  and  me tas t ab le  states 
would  emerge  as the only  solutions.  The  mot iva t ion  for  this search is found  
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in the analysis of the ground state of the Ising model with an external field. 
There one easily sees that if we require that a state minimizes the energy 
with respect to variations of the state inside arbitrary regions of a "size" 
smaller than a certain critical value, then there are exactly two solutions: 
the true ground state and the "metastable" state (see Appendix). At 
nonzero temperature the natural generalization would consist in looking for 
states which minimize the free energy with respect again to variations of the 
state inside arbitrary regions of not too large "size" ("size" stands for the 
ratio volume/surface).  Our results are "no-go" theorems: the only solution 
of this variational problem at T v a 0 is the true Gibbs state. 

This paper is organized as follows. In Section 2 we describe the 
systems under consideration and show that if a state satisfies the D.L.R. 
equations for regions containing only one lattice site then it is a Gibbs 
state. In Section 3 we show that the condition of local thermodynamical 
stability (L.T.S.) (2b) restricted to a finite region implies the D.L.R. equation 
for that region. In the Appendix we present for completeness the T = 0 case 
which motivated the whole discussion. 

We do not claim complete originality, as some of our results may be 
known in one form or another. For instance, a version of Theorem 1, under 
slightly modified assumptions which are not sufficient for our purposes, can 
be found in Refs. 4 and 5. However, to the best of our knowledge the 
implications of these results to the theory of metastability have nowhere 
been discussed. 

2. RESTRICTED D.L.R. CONDITION 

Throughout this paper we will consider a classical lattice system (spin 
system) with finite-range interactions. At each site i of an infinite lattice 
(typically Z v, v = 1,2,3 . . . .  ) we have a finite state space F i, which for 
simplicity we take to be independent of i, I'; = F. A configuration x of this 
system is a function 

x: fi-~ F i--) x( i )  ~ r 

with x(i) denoting the configuration at the site i, i.e., x E ~2 = I "~. For a 
finite region A C fi we denote by x A a configuration "inside A," i.e., a 
function xA:A- +F ,  i.e., x a E ~A = FA" Given a configuration x ~ fl we 
denote by x I A its restriction to A. If A 1 N A 2 = ~ we denote by XAXA2 the 
joint configuration in f~A,uA2 i.e., XAXA2(i) = X,u(t) if i ~ A l and X~XA2(i ) 
= XA2(i ) if i ~ A2. If A 2 C A 1, then XA2 is the restriction of XA, to A 2. 

A state of the system is a probability measure in the measure space 
(f~, Z) where E is the 0 field generated by the cylinder sets. Given a state/z 
we denote by p(xa)  the probability that the configuration inside A is XA, 
i.e., p(xA)=/~({x  : x / A - -  xA)). 
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The interaction is given by a collection (0a,  A E E, A finite} of func- 
tions q~A : f~A ~ R. The interaction is said to have range R if ~A = 0 when 
diameter of A > R. Of course 0A can be considered as function on f~ via 
OA(X) = ffA(X ] A). We denote by H A the energy in the interior of A, i.e., 

HA= E C  
x c A  

and by V A the interaction between sites in A and in A c, i.e., 

vA= E 
x N A=/=O 
x N A~=/-O 

For each finite A we define 

A+ = {i @ ~ :~x ~ 0 for some x ~ i ,x f3 A :/: O} 

AA = A+IA 

With the above notation a state is said to verify the D.L.R. equation at 
inverse temperature 13 < ~ if 

p(xAyA,) = T(XA lY A)P(YA') 
for each finite A' D AA, A' f3 A = O, where 

e x p [ - B ( / C  + VA)(xAy~A)] 
T(XA[y~A ) = 

~] exp[ - f l (H A + VA)(zAy~A)] 
~A 

A state is said to be a (global) D.L.R. state if it verifies the D.L.R. equation 
for each finite region A C s 

Definition. A state is a restricted D.L.R. state if it verifies the D.L.R. 
equations for each region A of one single site, i.e., A = (i} for some i E ~. 

Theorem 1. For classical lattice systems with finite-range interac- 
tions a restricted D.L.R. state is a (global) D.L.R. state. 

For the proof of the theorem we need the following lemma. 

Lemma.  For a restricted D.L.R. state of a classical lattice system at 
finite inverse temperature p(Xa) ~/= 0 VX A E F A for all finite A. 

Proof of  tho Iomma. We will proceed by induction on the size of the 
region. Let [A[ = 1, then from the restricted D.L.R, condition, 

P(xA) = E P(xAY~A) = E P(YaA) T(xAIy~A) (2.1) 
YaA yAA 

since T(x A ]YaA) > 0 and ~y~P(Y~A) ----" 1, P(Y~A) 1> 0 (2.1) implies p(XA) 
> 0 .  
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Let us assume that p(XA) > 0 for all A such that [A] = N, Vx A E F A. 
Let A' = A U i, i ~ A, lil = 1, IAI = N, and 

i=  Ai/A 

If 7= 0 then Ai C A and the restricted D.L.R. equation for i implies 

p(XA,) = p(X/XA) = T(xi I XA,)p(XA) 
and since by the induction assumption p(XA)> 0, we have p(XA, ) > 0 in 
this case. 

If i ' 4  0, Ai C /'U A and 

p(XA, y;) = p(XiXAy;) = T(X iI ZAi)tg(XAy;) (2.2) 
where Zai is the configuration whose restrictions are 

ZANAi -~- XAnAi Z'~ = Yr 

Now 

e(xAy0 = e(x ) > 0 
Y~ 

therefore p(xAy; )> 0 for some Yr. From (2.2) we conclude that some 
p(XA,yr) > 0 and sincep(xA, ) =~,yrp(XA, yr) we obtainp(xA, ) > 0. [] 

Romark. Notice that the lemma is false for the ground state (f l  
= ~ ) .  

Proof of Thoorem 1. Given a finite A c ~ and a finite A 'D  hA, 
A' r A = O, let i c A, lil -- 1, Si = (A u A')/ i .  Clearly S, D Ai. Then the 
restricted D.L.R. condition implies 

p(X~Vs,) = p(ysi)T(xi  [YAi) 

Using the lemma 

P (x/ys,) T(xi [YA,) exp{ - /~ [  ni(xi) + Vi(Xi~Ai)] ) 

P(ZiYsi) Z(zi l Y e 3  exp( - -  ~[ni ( z i )  + Vi(gYAi)] ) 

exp { - f i H  A u A'( XiYsi ) ) 
exp { - f l u  A u N( ziYs,) ) 

This means that for any two configurations XAo, ZAo of A o = A t.) A' which 
differ just at a single site i E A, 

p (xAo) exp [ - flHAo(XAo ) ] 
p (ZAo) exp [ -- flHAo(ZAo ) ] 

Now given any pair of configurations x a ,z A inside A 0 that differ only 
inside A we can construct a chain ,,(0 . . .  ,YAo of configurations in A o, f A  o , 
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,,(N) with ,,(k) differing from y(ko+l), k such that y(A~o ) = xAo, yAo = zAo :Ao 
= 1 . . . . .  N - 1 only at one site inside A. Then 

p(xAo) P (Y(Alo) ) p(y(Uo-') ) exp[-flHAo(Xao)] 
P(ZAo----~ = P(Y(2o)------~ " " P(Yffo) exp[ _ flHAo(ZAo) ] (2.3) 

The above relation implies the D.L.R. equation for the region A. In fact 
(2.3) may be rewritten in the form 

p(xAyA, ) = e x p [ -  flHAo(XAyA,) ] = e x p [ -  flHA~(XAy~A) ] 
p(ZAyA, ) exp[ -- flHAo(Z/~yA,)] exp[ -- flHA,(zAy~A)] 

and since ~]~ p(zayA, ) = P(YA') we get p(xAyA, ) = P(YA,) T(xA ]YA'). [] 

3. RESTRICTED LOCAL T H E R M O D Y N A M I C A L  STABILITY 

Following Sewell (2b) we define the free-energy content of a region A in 
the state/~ by 

+ kTg(xA [yAc)ln g(x A lyA~)] 

where #Ac is the restriction of the state to the complement A C of A and 
g(x A [yAc) is the conditional probability of x A given yAc. 

A state/~ is said to be (globally) L.T.S. if for each finite A 

Fa(/~') /> Fa(# )  

for all /~' such that /~c = /~a-  In other words, the state is L.T.S. if the 
free-energy content of the state in the region A is minimum with respect to 
variations of the state inside A, for all finite A. For finite range interactions 
L.T.S. implies D.L.R. condition (2b). The theorem below implies even more. 

T h e o r e m  2. Let A be a finite subset of s and/~ be a state of a system 
with finite-range interaction for which FA(/~')/> FA(/~) for all/~' such that 
/~r -- /~A" Then the state # verifies the D.L.R. equation for the region A. 

Proof. For a given yAc let f~c denote the free-energy functional 

fy^c(/~(xA)) = ~] [ #(XA)(HA + VA)(xAy~A) + kTl~(xA)ln/~(xA)] 
xA 

It is well known that the unique minimum of this functional is attained at 

= T(xAI  
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Let now/ ,  be a state which minimizes F A against variations inside A. 
Then 

~(XL [YA ~) = T(XA lYAA) (3.1) 

for almost all y^~ with respect to /~A" In fact let E be a measurable set of 
configurations outside A such that/~(x A [yA ~) ~ T(XAlYaA ) for all ya~ ~ E, 
and let v be the state given by 

~(x~) = ~ ( x ~ a ~ )  
ZA 

ZANF~XANF 

for each finite F c E. 

I "  

(3.2) 

Notice that the state v is equal to / t  when restricted to A c, and inside A 
satisfies (III.1). If/~A(E) = va(E ) @ 0 then 

FA(//) -- FA(V) > 0 

as the result of integrating a positive function over a set of positive 
measure. This proves (3.1) 

If AA C A' and P(YA') V~ 0 then 

fz I A=yAdt~Ac(Z~c)f'(XA I Z ~) 
bl(XA lYA') = f~ i A,=ya d~ac(zA0 = T(XA lYaa) 

and 

p(XAyA') = T(XA lY~A)P(YA') (3.3) 

If P(YA') = 0, then p(XAYA, ) -- 0 and (3.3) which is the D.L.R. equation for 
A, is true too. �9 

A P P E N D I X ~ A  RESTRICTED VARIATIONAL PRINCIPLE FOR 
METASTABLE STATES AT T = 0 

Let us for simplicity consider an Ising model in Z ~ at T = 0 with 
nearest-neighbor interaction, with a Hamiltonian given formally by 

1t= - J E + o j +  h E ", 
( i j> i E Z  v 

where the ~<,j> is the sum over all pairs of nearest-neighbor sites, with 
J > 0, h > 0. The ground state of the system is a measure/z_ concentrated 
in the configuration x_  with all spins down, i.e., x (i) = - 1, Vi ~ Z~: 

t _ ( E )  = 1, x_ ~ t r  ~ E  

/,_ ( E )  = 0, x_CZE~ E 
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If  0 < h < 2pJ  then the state/~+ (E )  = / ~ _  ( -  E )  is the "metastable  state" 
and  verifies the following variational principle: for all regions A such that 
hlAI < 2vJlOAI where IAI and 10Ar are the volume and surface of A, 
respectively, 

Fa( /* '  ) > FA(/*+) 

for all /~' such that /~'A = /*+A c as one trivially verifies. Here Fa( / , )  is as 
defined in Section 3 for T = 0. 
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